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Time Code for multifunctional 3D printhead
controls

Sarah Propst & Jochen Mueller

Direct Ink Writing, an extrusion-based 3D printing technique, has attracted
growing interest due to its ability to process a broad range of materials and
integrate multifunctional printheads with features such as shape-changing
nozzles, in-situ curing, material switching, and material mixing. Despite these
advancements, incorporating auxiliary controls intoGeometryCode (G-Code),
the standard programming language for these printers, remains challenging.
G-Code’s line-by-line execution requires auxiliary control commands to
interrupt the print path motion, causing defects in the printed structure. We
propose a generalizable time-based synchronization approach called Time
Code (T-Code), which decouples auxiliary control from G-Code, enabling
uninterrupted print path enrichment. We demonstrate the method’s effec-
tiveness with both high-end and affordable 3D printers by fabricating func-
tional gradients and parallelizing printhead auxiliary devices for mass
customization. Our method reduces defects, enhances print speed, and
minimizes the mechanical burden on 3D printers, enabling the rapid creation
of complex multimaterial structures.

Additive manufacturing (AM), or three-dimensional (3D) printing
provides design freedoms that are not feasible using conventional
manufacturing techniques, enabling the production ofmultifunctional
and hierarchically complex structures for a variety of industries, ran-
ging from aerospace and construction to consumer goods and
healthcare1–5. Specifically, direct ink writing (DIW)—a material extru-
sion 3D printing technique—has gained attention due to it’s ability to
process a broad range of organic and inorganic materials, both indi-
vidually and concurrently5–13. DIW can be further enhanced by multi-
functional 3D printheads that enable, among others, multimaterial
switching14, mixing4,15–20, in-situ curing21,22, and rotational co-extrusion
with sub-voxel resolution23,24. This versatility facilitates diverse appli-
cations, such as architected materials, integrated electronics, optics,
soft robotics, and vascularized tissue23,25–28.

Despite these advancements, there has been little to no
change in Geometry Code or G-Code, which remains the most
common programming language used to control the print path of
extrusion-based 3D printers29. G-Code was originally introduced
for computer numerical control (CNC) machines in the 1950s, long
before the first AMmachines30, and although it efficiently manages

motion, it does not easily adapt to include integrated auxiliary
controls, such as pressure boxes, UV lights, and stepper motors.
This limitation stems from the line-by-line execution of G-Code,
requiring the printer to decelerate and stop at each new line,
leading to over-extrusion defects. In simple, single-material DIW
setups, these stops and defects only occur at directional changes
in the print path; however, if additional path functionalization,
such as material switching, is desired, auxiliary commandsmust be
inserted as new lines in the G-Code, causing frequent interruptions
and defects along the print path as demonstrated in Fig. 1a–d. This
requirement is particularly problematic with designs necessitating
frequent changes, such as continuous compositional4,17,20,31 and
shape gradients32–34.

To address the defects associated with G-Code interruptions
due to directional changes, many commercial fused filament fab-
rication (FFF) printers utilize a method known as linear advance.
This technique predicts pressure buildup in the nozzle and adjusts
the extrusion rate during deceleration35. Although linear advance
has led to improvements in print quality, its effectiveness is limited
by the need for pressure prediction values to be calibrated
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experimentally, as they depend on material properties and print
speed. In addition, linear advance, which is designed for
volumetric-driven extrusion of thermoplastics, does not account
for time-dependent material properties, such as thixotropy and
pot-life36,37, which are common in viscoelastic materials used in
DIW. Further, linear advance is not directly adaptable to pressure-
driven systems used in DIW applications that require rapid flow
rate control beyond what is achievable using volumetric extrusion.

In addition to defects, frequent interruptions to the print path
can lead to significant increases in print time due to the finite
acceleration capabilities of the 3D printer; this concern intensifies as
researchers pursue ever-higher resolutions. For instance, at voxel-
level resolution, where an action is required at every travel distance
equal to the nozzle diameter, the total print time can increase up to
six times for a nozzle diameter of 0.1 mm (Fig. 1e, f). In addition,
highly functionalized print paths often require multiple commands
to be sent simultaneously or consecutively. Using conventional G-
Code, this becomes a significant issue as the commands have to be
executed line-by-line before printhead movement can continue
(Supplementary Fig. 1).

Although printer accessories and systems addressing specific
functions, such as linear advance for defect control and filament

splicing for multimaterial FFF, do exist, they cater to niche needs and
specific conditions, such as material type and 3D printer brand38,39.
These systems are not generalizable for the broad range of auxiliary
controls required to accommodate the growing complexity of 3D
printheads needed for creating multimaterial and multifunctional
objects. To sustain the growing potential of DIW, it is necessary to
advancehowcomplexprint paths are executed, both to reducedefects
and to enable frequent and independent control of auxiliary devices
without increasing print time, part file size, or imposing additional
mechanical stresses on the 3D printer.

Here, we propose a generalizable method that separates
control of auxiliary devices from G-Code using a time-based
synchronization approach (Fig. 1g), which we refer to as Time
Code, or T-Code. This method effectively decouples print path
motion from on-the-fly in-situ functionalization, thereby reducing
interruptions to the print path and enhancing print speed without
compromising the precision, accuracy, or complexity of 3D-
printed structures (Fig. 1h, i and Supplementary Movie 1). The
reported method holds far-reaching potential, as we demonstrate
by its application in creating functional gradients for both energy
absorption and optics and in the parallelization of multiple aux-
iliary devices for mass customization.
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Fig. 1 | G-Code limitations and T-Code introduction. a Exemplary multimaterial
lattice structure displaying defects due to G-Code interruptions from material
switching commands, with arrows pointing to defects occurring before the inter-
face due to dead volume in the nozzle anddelayed executionof thepressure boxes.
b Schematic of a single filament withmultiple auxiliary commands along its length.
c G-Code interruptions lead to discontinuity and frequent stops in the velocity
profile of the 3D printer. d These interruptions result in over-extrusion defects,
which becomemorepronounced at reduced accelerations. e, fComparison of total
print times as a function of the number of auxiliary actions at e various velocities

(acceleration = 1000 mm/s2) and f various accelerations (velocity = 20 mm/s);
assuming a linear velocity profile for the 3D printer, the graphs show the print time
comparison between conventional G-Code and the time-sync solution, or T-Code
which g decouples the auxiliary commands from the printer’s motion, ensuring an
uninterrupted velocity profile and h a reduction in defects regardless of accelera-
tion. i The exemplary multimaterial lattice printed using the T-Code method
demonstrates a reduction in defects. Scale bars = 5 mm. Source data provided as a
Source data file.
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Results
Time Code-based 3D printing
To implement time-based synchronization, the commands for the
auxiliary devices are decoupled from the G-Code print path and con-
trolled via a custom Python script (Fig. 2a). First, a conventional G-
Code, which contains the desired locations of the auxiliary commands,
is imported into Python. The script identifies and differentiates the
G-Code motion commands (e.g., “G0” and “G1”) from auxiliary com-
mands, categorizing them into two distinct groups while ensuring
proper alignment and parallelization of the commands. Once decou-
pled, the script consolidates the interruptedG-Codemovements into a
continuous, uninterrupted print path. For example, if a print path
includes an auxiliary command every 2 mm over a 10 mm distance in
the x-direction, the script consolidates the five separate “G1 X2”
commands into one continuous “G1 X10” path. The uninterrupted
G-Code is then formatted and transferred for execution by the 3D
printer. An exemplary comparison between interrupted conventional
G-Code and uninterruptedG-Code generated via T-Code is provided in
Supplementary Fig. 2. Subsequently, using the defined print speed and
acceleration, the velocity profile of the 3D printer is generated. The
timestamps for the auxiliary commands are then calculated by map-
ping their locations onto the velocity profile. These timestamps are
formatted into a list, ready for executionby the Pythonscript.Once the
uninterrupted G-Code (Output 1) and the auxiliary timestamps (Out-
put 2) are generated, the script awaits a start ping from the 3D printer
to initiate synchronization.

Depending on the specific requirements of the 3D printer, the
connection between the 3D printer and Python can be established
through various methods. We have successfully used both physical
and virtual RS-232 connections, TCP/IP networking, and voltage

signals. In our demonstrations, the 3D printer control software and
Python are run on the same computer but this is not a requirement. A
schematic of the software/hardware connections can be found in
Supplementary Fig. 3. Regardless of the setup, there is a finite delay
between sending the start ping from the 3D printer and its reception
by Python. This delay is dependent on both hardware and software, so
it is crucial to determine time delay during initial setup. We achieved
this by sending a series of equally timed pings from the 3D printer and
recordingwhen Python receives them; the average difference between
the ideal intervals and the actual times between consecutively received
pings is calculated and used to adjust the synchronization of the sys-
tems (Supplementary Fig. 4).

During initial tests of the system, we observed an increasing
synchronization mismatch during prints, likely due to the cumula-
tive small yet unavoidable deviations in both themechanicalmotion
of the 3D printer and the execution of the Python script. In an
exemplary multimaterial print measuring 30mm by 40mm, the
error approximately doubled at the interface between the black and
white materials over the course of the print (Fig. 2b, c). To maintain
synchronization, we introduced resync pings from the G-Code to
Python to readjust the timing of command executions. Tominimize
the interruptions and defects that these resyncs might cause in the
print path, they are strategically placed at points where direction
changes already necessitate stops in the print path and require very
little processing time (Supplementary Fig. 5). Any remaining
deviations in auxiliary command execution can largely be attributed
to errors and delays from the auxiliary devices’ processing and
execution of the commands (Fig. 2b, c), as evidenced by compar-
able results when controlling pressure boxes directly via the G-Code
(Supplementary Fig. 6).
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Fig. 2 | T-Codemethodology. a Process of decoupling and synchronizing auxiliary
commands with G-Code. b, c Impact of resynchronization on print accuracy. The
red circles in b represent locations of resync pings. d Common velocity profiles
(top) used to illustrate differences in 3D-printed parts (bottom). 'Bang-bang
motion' demonstrates how shortmoves that donot reach full velocity aremanaged
in the velocity profile estimation. The red dashed line indicates the desired print

velocity. e Comparisons of structures printed using a custom high-performance
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multimaterial imageof theHopkinsblue jayprintedusingT-Code. Blue JayAthletics
logo courtesy of Johns Hopkins University. Source data provided as a Source
data file.
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In addition to maintaining synchronization, the precise definition
of the printer’s velocity profile as it accelerates or decelerates, which is
often unknown or imprecise, is crucial in system development.
Because the most common 3D printer velocity profiles, linear, half-
sine, and s-curve profiles, are relatively similar in shape, we approx-
imate the profile in the Python script to be linear. This simplification is
independent of print direction and extends to short “bang-bang”
motions—movements that do not reach full speed within the defined
line segment. To assess the accuracy of this simplification, we com-
pared the linear velocity profile used in the Python script to other
common 3D printer velocity profiles using a custom high-precision
gantry stage (Fig. 2d). At a print speed of 15 mm/s and an acceleration
of 1000mm/s2, no significant differences were observed in the printed
parts among these profiles (Fig. 2di–iii). In addition, using the linear
velocity mode, we verified the time-based solution at various speeds
(5–25 mm/s) and accelerations (200–1000 mm/s2; Supplementary
Fig. 7). These results indicate that T-Code can be effectively used as a
generalizable and low-cost solution for a variety of 3D printers, even
those with unknown velocity profiles. For increased precision, the
Python script can be customized to define specific velocity profiles.

To further verify the generalizability of the code, we compared
different geometries printed on the custom gantry stage to those
printed on an affordable desktopprinter. The customgantry can reach
accelerations of over 1000 mm/s2, while the recommended accelera-
tion for the desktop printer is limited to 700mm/s2. Without the time-
based synchronization, the acceleration discrepancies between the
two printers are more pronounced (as evidenced in Fig. 1d); however,
with only minor adjustments, the T-Code approach yields comparable
results for circular, linear, and 3D print paths, independent of print
direction, despite smaller accelerations (Fig. 2e, f).

Time Code-based fabrication of functional objects
To further demonstrate the efficacy of time-based synchronization, we
fabricated various structures that are infeasible with conventional
G-Codepathplanning. Structures that particularly benefit fromT-Code
are those requiring frequent modulation of functionality along the
print path, such as filament diameter, composition, and UV-curing
intensity—critical for printing functional gradients.

Functionally graded structuralmaterials, known for their strength-
to-weight ratio and energy absorption, are prevalent in many natural
systems, such as bone40 and bamboo41. Inspired by these natural sys-
tems, there has been recent interest in using AM to create architected
lattices and structures that are functionally graded both geometrically
and compositionally to enhance properties such as stiffness, strength,
energy absorption, and fracture toughness17,20,27,40,42–45. Beyond
mechanical improvements, functional gradients find utility in a variety
of applications such as radio frequency (RF) devices46, optics4, and
drug delivery47.

Filament diameter gradients. One method of creating functional
gradients via 3D printing is through the use of filament geometry, such
as variations in width, height, and shape, which can be achieved by
varying the nozzle diameter32–34 or speed to indirectlymanipulate flow
rate45,48–50. Both methods require discretizing the print path into short
segments, leading to defects, increased print times, large file sizes, and
stuttering due to the printer’s physical limitations. T-Code addresses
these issues by enabling a continuous print path, effectively over-
coming the limitations associated with traditional methods. To
demonstrate gradient filaments, we varied the flow rate by adjusting
the applied extrusion pressure in a fixed diameter nozzle, printing at a
constant speed. Compared to using G-Code alone, T-Code achieves a
seamless change in filament cross-section—both in width and height
(Fig. 3a–d).

A direct and recent use case for varying filament width is variable
contour infill, which is typically used in FFF to optimize speed and

infill accuracy49,50. Specifically, variable contour infill addresses lim-
itations of traditional slicers designed for fixed nozzle diameters
which optimize the print path for outer shapes at the expense of
inner regions, resulting in large gaps, porosity, or contour errors due
to binary over- or under-extrusion decisions. Unlike the currently
available methods, the pressure-driven T-Code method can achieve
variable contour infill without the need to discretize the print path or
change the speed. As compared to structures printed using a fixed
filament diameter (Fig. 3e–l and Supplementary Fig. 9), T-Code with
variable width infill significantly improves part accuracy (Fig. 3m, n),
simplifies the print path, and reduces print time, for example, by
reducing the number of contours required to infill a space (Fig. 3e–h
and SupplementaryMovie 2). In addition, this method effectively fills
gaps at sharp direction changes, such as those seen in triangular
print paths (Fig. 3i, j), and maintains a more consistent layer height
(Fig. 3k–n).

In addition to enabling fully dense parts, gradient filaments
enabled by T-Code can facilitate discrete parts with localized infill
densities (Fig. 4a and Supplementary Fig. 10). Similarly to solid
parts, producing similar structures using conventional methods
would require either multiple tool passes or frequent adjustments
in the print speed, both of which result in extended print times and
defects, such as stair-stepping artifacts and over-extrusion. The
smooth density transitions in the T-Code structures can enhance
and customize the structures’ overall mechanical and optical
behavior. For example, graded filaments have been shown to
enhance energy absorption and fracture mechanics in cellular
structures17,42. Figure 4b shows different filament or strut designs,
including fully graded, partially graded, and constant width struts.
In bending-dominated lattices containing constant width struts,
failure often occurs along a shear band at the nodes due to stress
concentrations51. Using T-Code to integrate different strut types
into a lattice made from brittle epoxy, we demonstrate that nodal
failure can be significantly reduced without altering the overall
relative density, thus substantially improving virtually all mechan-
ical properties, such as elastic modulus (+50%), ultimate strength
(+30%), and toughness (+212%; Fig. 4c–e). This improvement is due
to the reinforcement of the nodes, leading to greater energy
absorption and increased resilience to fracture, as evidenced by
failure patterns diverging from the shear band and the foam-like
behavior of lattices with graded struts (Fig. 4f and Supplementary
Movie 3).

Specifically, the graded lattice displays elastic-brittle foam beha-
vior, which is characterized by three distinct phases in the stress-strain
curves: (1) linear elasticity (bending), (2) a plateau (brittle crushing),
and (3) densification52. These phases are clearly evident in the curves of
the gradient lattices across all relative densities (Fig. 4g), resulting in
consistently higher stiffness and ultimate compressive strength as
compared to their non-graded counterparts (Fig. 4h, i). Due to the
expected nodal failure, the non-graded lattices do not exhibit densi-
fication; instead, their failure strain significantly decreases with
increasing relative density. This results in substantially higher energy
absorption values in the graded lattices for relative densities above
0.28 (Fig. 4j). Fabricating such graded lattices with conventional
G-Code would be virtually impossible.

Compositional gradients. In addition to geometric gradients, T-Code
can also be applied to create compositional gradients, such as bioin-
spired interfaces17,31, stiffness gradients20, and gradient index glass4.
Previous research has shown the use of print speed manipulation for
gradient filaments; however, this method only alters the overall
volume/flow rate and cannot be used to manipulate the ratios of the
materials on-the-fly48. Traditional active and passive material mixing
nozzles facilitate functionality but require significant mixing volumes
inside the printhead15,53; this prevents voxel-level resolution and causes
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substantial delays, making these nozzles infeasible for high-resolution
AM. To overcome this limitation, we utilize printheads designed for
material switching14,54; however, instead of switching entirely, we
coextrude materials concurrently at varying ratios (Fig. 5a, b). In
combination with the T-Code approach, this enables rapid voxel
composition changes while maintaining a constant print speed. To
maintain a constant flow rate, and thus a constant cross-sectional area,
each material must be precisely controlled, considering additional
factors like ink aging (Fig. 5c, d). To visualize the voxel-level compo-
sitional control, we use coextrusion to achieve optical color blending
(Supplementary Fig. 12), akin to the techniques used for LED displays,
textile weaving, and pointillism art, where adjacent colors create the
illusion or perception of color mixing55,56. To demonstrate this, we 3D-
printed filaments with various discrete red and blue ratios, transi-
tioning from red, through their blended color purple, to blue
(Fig. 5e–g). Using T-Code, a simple print path (Supplementary Fig. 13)
can achieve continuous color gradients (Fig. 5h and Supplementary
Movie 4), discrete color changes (Fig. 5i and Supplementary Movie 5),
or a combination of discrete and continuous color changes (Fig. 5j and
Supplementary Movie 6.

In DIW, materials with similar non-Newtonian rheological prop-
erties are generally best for coextrusion, but differences, such as
viscosity, can be managed by adjusting hardware and nozzle design.
For instance, applied pressure can be tailored to each material, and
nozzle channel lengths can be varied to modify flow resistance and
mitigate backflow14. Ensuring the yield stress of each material is suffi-
cient to maintain its shape after extrusion and support subsequent
layers is crucial, though in-situ curing, such aswith UV light, can enable

the use of low-viscosity or low-yield stress materials. T-Code’s gen-
eralizability allows adaptation for additional auxiliary controls,
enabling the printing of diverse materials.

A limitation of this coextrusion method is its directional depen-
dence on the printhead orientation relative to its motion during
material deposition—i.e., the mixed ratio must always be visible from
the top plane limiting the directions the nozzle is able to travel. To
address directionality issues arising from the fixed nozzle orientation,
a rotational coextrusion nozzle24,57 could be used. Directionality can
also be addressed using concurrent modulation of core and shell
diameters in a “core-shell” filament to maintain a constant outer
diameter27. As demonstrated in Supplementary Fig. 14, T-Code can
enable continuously and instantly changing ratios in core-shell archi-
tecture to create voxel-level gradients. In the future, these switching
and mixing concepts can be extended towards material mixing at a
molecular level for mechanical, electrical, or biomedical applications,
for example, via diffusion.

Scalability and parallelization for mass customization. Beyond
functional gradients, decoupling geometric from functional control
in the printhead via T-Code can substantially enhance the scalability
of 3D printing and enable mass customization. This advancement is
facilitated by integrating multiple printheads into a single 3D prin-
ter or gantry stage, with each printhead moving in-sync but per-
forming distinctly different tasks at any given location, such as
toggling extrusion or switching between materials. Ultrafast
switching nozzles support this capability, enabling voxel-level
resolution and a parallel scanning strategy for printing parts,
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rather than completing each material island individually before
moving to the next one14.

While conventional G-Code-based control strategies can offer
print parallelization, they require every printhead to stop each time an
action is needed in one of the structures, a frequency that exponen-
tially increases with the number of printheads or parts. In contrast,
T-Code allows each printhead to operate independently. This syn-
chronization further accelerates fabrication by dividing a large struc-
ture into n smaller sections, each printed by a separate printhead,
effectively reducing the overall printing time by a factor of n.

To demonstrate the parallelization of a single object print, we
divided a 180mm× 180mm landscape image into three 180 mm × 60
mm sections, printing them simultaneously (Fig. 6a–g and Supple-
mentary Movie 7). With conventional G-Code, each print path stop-
page and its resulting defect would propagate into the other sections,
as seen in Fig. 6d. In this example, 98% of the color switches across all
sections of the print occur uniquely or not at the same time/location as
a color switch in another section (Supplementary Fig. 15), resulting in
three total defects for the majority of individual switches. In addition,
sending consecutive commands via G-Code leads to longer interrup-
tions to the print path (Supplementary Fig. 1). Thus, the defects would
be about three times larger even if all the switches occur at the same
locations. Our time-based solution enables seamless material switch-
ing across all sections, resulting in a 180mm× 180mmprint that takes

one-third the time compared to using a single nozzle method. This
approach can extend beyond the 2D image presented here, enabling
rapid fabrication of large 3D structures.

Similarly, parallelization can be used for mass customization of
disparate structures. By aligning three different objects—such as a
hollowhalf-sphere, a triangular prism, and a block cube pyramid—onto
the same print path (Supplementary Fig. 16), they can be printed
simultaneously (Fig. 6h–m and Supplementary Movie 8). Although
beyond the scope of this project, to maximize the benefits of this
method, the print path should be optimized beyond the basic cubic
path used here, aiming to minimize the total non-extrusion moves.
Structures with overall similar shapes and sizes but varying internal
material arrangements, such as lattice structures with different density
layouts seen in Fig. 4, Supplementary Fig. 18, and Supplementary
Movie 9, naturallymaximize the timebenefits of parallelization, as they
involve no unnecessary non-extrusion moves. Parallelization in print-
ing discrete structures has potential applications in the rapid proto-
typing of several design concepts at once as well as in the mass
customization of biomechanical devices, such as orthotics, where only
slight differences are needed between different patient requirements.

Discussion
We have developed a generalizable method called T-Code
for improved print path functionalization to decouple auxiliary
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device controls from G-Code motion planning. The continuous
print path enabled by T-Code improves overall print perfor-
mance, including accuracy, precision, and speed, without altering
the 3D printer’s hardware or software. In addition, T-Code allows
affordable desktop printers the ability to produce structures
comparable in quality to high-end alternatives. To demonstrate
the method’s potential, we showcased seamless control of func-
tional gradients for improved infill, energy absorption, and
optics, as well as print path parallelization for scalability and mass
customization.

T-Code is particularly advantageous for pressure-driven systems
due to their quick flow rate control but works universally across all
applications, materials, and extruder types compatible with conven-
tional G-Code. This includes DIW and FFF, high-viscosity inks58,59,
volumetric extruders, which offer precise flow rate control but slow
reaction speeds typically unsuitable for multimaterial printing, and
even CNC milling machines and lathes. By combining appropriate
printheads, auxiliary hardware (e.g., pressure boxes, UV lights, volu-
metric extruders), and material design, T-Code can be adapted to
print a wide range of functional materials, enabling a single-system
approach for fabricating multifunctional structures such as structural

batteries60,61, shape-changing structures62, and soft robotics and
wearables with integrated electronics63.

Current speed and resolution limits in our demonstrations are
primarily due to external hardware and software constraints. Most
commercial pressure dispensers are limited to 1–5Hz switching fre-
quencies, and communication with auxiliary devices is often unpre-
dictable due to task scheduling protocols. To address these
limitations, future work will integrate solenoid valves to increase
multimaterial switching to 50Hz or more14. We also envision T-Code
integration into real-time operating systems or offloading timing-
critical tasks to dedicated hardware, such as microcontrollers, for
more efficient auxiliary device communication. With advancements in
printhead, material, and part design, T-Code has broad potential for
fabricating scalable, multifunctional structures across a variety of
applications such as biological, electrical, optical, and mechanical.

Methods
Materials
All samples, unless otherwise specified, were printed with silicone inks
containing SE 1700 base and catalyst (Dow Corning) at a 10:1 weight
ratio, colored with 1% w/w pigment (Silc-Pig, Smooth-On). The inks
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weremixed for 2minutes at 2000 rpm in a speedmixer (DAC 300-100
Pro, Flacktek). The stiff epoxy used to fabricate the black gradient
lattices in 4c–j was composed of EPON 828 (Hexion), Epikure 3230
(Hexion), fumed silica (M5, CAB-O-SIL), and pigment (Silc-Pig) at a
100:35:14.5:0.5 weight ratio. The epoxy ink was prepared through
speed mixing (DAC 300-100 Pro, Flacktek) under vacuum at 800 rpm
for 90 s, 1600 rpm for 90 s, and 2000 rpm for 120 s.

Ink rheology
The rheological behavior of the ink (Supplementary Fig. 20) was
characterized with a compact modular rheometer (MCR 302, Anton
Parr). Measurements were performed at 20 °C using a 25mmdiameter
parallel-plate geometry with a gap of 0.5mm. Apparent viscosity was
measured by shear-rate sweeps between 0.01 s−1 and 100 s−1. The sto-
rage and loss moduli were determined using oscillatory amplitude
sweeps at shear strains between 0.01% and 100% with an angular fre-
quency of 10 rad/s. Samples were tested within 20 min of mixing.

Multimaterial printhead fabrication
The switching nozzle printheads were fabricated with an LCD Resin 3D
Printer (Sonic mini 8K, Phrozen) using either Aqua Gray 8K Resin
(Phrozen) or Simple Clear Resin (Siraya Tech). After printing, the
nozzles were cleaned with isopropyl alcohol and dried with com-
pressed air to remove uncured resin from the channels. A schematic of
the switching nozzle can be found in Supplementary Fig. 19.

Printing process
The ink-filled syringe barrels were connected to the nozzles and
mounted on 3-axis motion gantry stages (Aerotech or Engine SR,

Hyrel). Printer motion was controlled via G-Code using A3200 or
Automation1 (Aerotech) or Repetrel (Hyrel) motion controller soft-
ware. Inks were extruded using pressure pumps (Ultimus V, Nordson
EFD) and gated by pneumatic solenoid valves (VQD1151-5MO, SMC)
controlled with 0-24 V digital relays (WAGO). For conventional G-Code
demonstrations, the pressure boxes and valves were controlled within
the G-Code using A3200, Automation1, or Repetrel software. For T-
Code, the pressure boxes and valves were synchronized with the print
motion using the custom T-Code Python script described above. The
motion control software and T-Code Python script were connected via
virtual RS-232 connections or TCP/IP networking. Unless otherwise
specified, all structures were printed on the Aerotech gantry stage at
accelerations of 1000 mm/s2. All structures were printed at room
temperature within 3 h of material mixing. After printing, the samples
were cured in an oven for 24 h at a constant temperature of 100 °C.

G-Codewasgenerated in threeways: (1)manually, (2) via a custom
Python script that projects multicolor bitmap files onto a parallel-
rastering print path, and (3) via the Prusa slicer. To project the 3D
parallel print structures (hollow dome, triangular prism, and cube
pyramid) onto parallel-rastering print paths, the structures were first
modeled in SolidWorks, converted to .stl files, and sliced into 2D
images using 3D Slicer, an open-source 3D visualization software. For
multimaterial and gradient prints, the switching location/pressure
change location was determined by an offset variable to account for
dead volume in the nozzle and command delays.

Single material samples, including gradient diameter samples in
Figs. 3 and 4, were printed using 20 GA (Nordson EFD) nozzles unless
otherwise specified. All multimaterial structures were printed using
switchingnozzleswith a 1mmoutlet diameter. Theblue singlefilament
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samples in Fig. 1d and h were printed at speeds of 20 mm/s and a
pressureof 20psi. Theblue andblackmultimaterial lattices comparing
conventional G-Code (Fig. 1a) and T-Code (Fig. 1) were printed at
speeds of 10 mm/s, accelerations of 200 mm/s2, and pressures of
25 psi. The black and white resync comparison samples (Fig. 2b) were
printed at speeds of 15 mm/s and pressures of 35 psi. The blue and
white checkerboard cubes comparing different velocity profiles
(Fig. 2di–iii) were printed at 10 mm/s using pressures of 25 psi. The
Hyrel and Aerotech comparison structures (Fig. 2e) were printed using
speeds of 10 mm/s and pressures of 25 psi; the Hyrel samples were
printed at the recommended acceleration of 700 mm/s2, while the
Aerotech samples were printed at 1000 mm/s2. The Hopkins blue jay
(Fig. 2f) was printed at 5 mm/s using pressures of 20 psi.

The gradient filament diameter samples in Figs. 3 and 4 were
printed using a fixed nozzle diameter (20 GA, Nordson EFD) at con-
stant print speed; the flow rate was altered by adjusting the extrusion
pressure applied. When decreasing flow rates and thus lower pressure
inputs are desired, the pressure build-up in the nozzle is released by
toggling the solenoid valves off and on quickly. The white increasing
diameter filament gradients (Fig. 3a–d) were printed at a speed of
15 mm/s at increasing pressures of 25–55 psi. The constant width and
variable infill structures (Figs. 3f–j and 4a, b), were printed at speeds of
5 mm/s; the gradient diameter samples were printed at pressures of
18–30 psi (pressure change increments every 1 mm), and constant
filament width samples were printed at 18 psi. The epoxy lattice
structures (Fig. 4c) were printed at speeds of 10mm/s; the non-graded
cellular structures were printed at 40 psi, and the graded structures
were printed at 30–45 psi, with a pressure change occurring
every 0.5 mm.

The coextruded compositional gradients (Fig. 5) were printed at
speeds of 10 mm/s (linearly graded sample) and 5 mm/s (cube illusion
and Einstein) usingpressures of 5–25 psi and 5–20psi, respectively; the
appropriate pressure ratios for each material were found using the
experimentally determined relationship between flow rate and pres-
sure shown in Fig. 5c and discussed more below.

The parallel print mountain scene (Fig. 6a–g) was printed at a
speedof 5mm/susing pressures of 20psi. The parallel printeddiscrete
3D shapes (Fig. 6h–m)were printed using 18GAnozzles (Nordson EFD)
at speeds of 10mm/s at a starting pressureof 25psi; the pressureswere
increased by 0.1 psi every layer to account for increasing viscosity as
the ink aged (see Supplementary Fig. 17).

Coextrusion pressure ratio determination
To maintain a constant cross-sectional area of the filament, the rela-
tionship between pressure and flow rate of SE1700 through the
switching nozzle was experimentally determined by extruding a single
material through a 1 mm diameter switching nozzle at various pres-
sures. A curve was fitted to the data using a non-linear least squares
optimization function in Python. Due to factors such as nozzle channel
geometry (Supplementary Fig. 19), thixotropy, and material pot life, it
is challenging to directly apply existing flowmodels, like the Herschel-
Bulkley model64, to determine the flow rate-pressure relationship.
Therefore, the fitted curve presented in Fig. 5c is used for interpolation
of themeasured data to determine the appropriate pressure values for
specific color ratios. The flow rate-pressure relationship is verified
through the coextrusion of red and blue dyed SE1700 aged 0.5–1 h
(Fig. 5d). Assuming a cylindrically extruded filament with radius r and
speed v, the ideal flow rate is given by:

Q=πr2v ð1Þ

Figure 5e–g further verifies that appropriate color ratios can be
achieved while maintaining a relatively constant filament diameter.
Errors in the ratios andwidths of thefilaments are likely due to the flow
rate’s dependence on factors that changeover time, suchas thixotropy

and pot life. Although these factors are important, addressing them
was beyond the scope of this project.

Print characterization
The accuracy and precision of the 2D samples used to validate the
T-Code method were assessed by scanning the samples’ surface at
3200dpi (Epson) and using Photoshop (Adobe) to remove dust and
reduce glare from the curved surface of the filaments. A custom
Python script was used to determine the location and color of each
pixel and compare them across samples and to the ideal structure.
Supplementary Fig. 8 provides an example of how the porosity and
contour error for the variable contour infill samples (Fig. 3) were
determined.

Mechanical tests of the functionally graded lattices in Fig. 4 were
performed on an electromechanical testing system (Criterion, MTS)
using a 50 kN load cell. The samples were tested under compression at
a rate of 0.25 mm/s. The energy absorption for gradient lattice struc-
tures was calculated by computing the area under the stress-strain
(σ–ϵ) curve up to the average onset of densification strain (ϵd) (Sup-
plementary Fig. 11) as given by:

W =
Z ϵd

0
σðϵÞdϵ ð2Þ

Data availability
Source data are provided with this paper.

Code availability
T-Code is available at https://github.com/JHU-Mueller-Lab/Time-Code-
for-Multifunctional-3D-Printhead-Controls.
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